

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CROSS-PLATFORM DEVELOPMENT TECHNIQUES FOR

MOBILE DEVICES

by

Arthiemarr M. Mangosing

September 2013

Thesis Advisor: Thomas Otani

Second Reader: Loren Peitso

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-

0188
Public reporting burden for this collection of information is estimated to average 1 hour per

response, including the time for reviewing instruction, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington headquarters Services, Directorate

for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2013

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

CROSS-PLATFORM DEVELOPMENT TECHNIQUES FOR MOBILE DEVICES

5. FUNDING NUMBERS

6. AUTHOR(S) Arthiemarr M. Mangosing

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and

do not reflect the official policy or position of the Department of Defense or the U.S.

government. IRB protocol number ___N/A_____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200 words)

Business and the military have become increasingly dependent on mobile

technology in the last decade. The proliferation of mobile devices provides

application developers a new and growing market for providing solutions.

Mobile devices run on diverse platforms requiring differing constraints that

the developer must adhere to. Thus, extra time and resources must be expended

to develop multiple versions of a single application for the different

platforms. There have been attempts to minimize the need for these extra

costs with mobile cross-platform development environments such as Titanium,

PhoneGap, and Corona. They are relatively new to the mobile application

building world, and though they have the same goal, their approaches are quite

different.

In this thesis, we will provide a detailed analysis of these three cross-

platform development tools by using each to develop applications, and then

compare each by describing relative strengths and weaknesses.

14. SUBJECT TERMS Mobile development, Cross-platform development,

Android development, iOS development

15. NUMBER OF

PAGES

125

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

CROSS-PLATFORM DEVELOPMENT TECHNIQUES FOR MOBILE DEVICES

Arthiemarr M. Mangosing

Lieutenant, United States Navy

B.S., University of South Florida, 2008

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 2013

Author: Arthiemarr M. Mangosing

Approved by: Thomas Otani

Thesis Advisor

Loren Peitso

Second Reader

Peter Denning

Chair, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Business and the military have become increasingly

dependent on mobile technology in the last decade. The

proliferation of mobile devices provides application

developers a new and growing market for providing

solutions. Mobile devices run on diverse platforms

requiring differing constraints that the developer must

adhere to. Thus, extra time and resources must be expended

to develop multiple versions of a single application for

the different platforms. There have been attempts to

minimize the need for these extra costs with mobile cross-

platform development environments such as Titanium,

PhoneGap, and Corona. They are relatively new to the

mobile application building world, and though they have the

same goal, their approaches are quite different.

In this thesis, we will provide a detailed analysis of

these three cross-platform development tools by using each

to develop applications, and then compare each by

describing relative strengths and weaknesses.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PLATFORM DIFFERENTIATION2
B. CROSS-PLATFORM DEVELOPMENT2
C. GOALS ..3
D. SELECTED CROSS-PLATFORM TOOLS3

II. BACKGROUND ..5
A. MOBILE PLATFORMS5

1. iOS ...6
2. Android6
3. Mobile Application Developer Feedback8

B. PLATFORM LOOK-AND-FEEL8
1. User Interface Differences9

C. PREVIOUS RESEARCH10
D. CROSS-PLATFORM DEVELOPMENT LIFECYCLE10

1. Develop10
2. Integrate11
3. Build ..11
4. Publish11
5. Manage11

III. APPROACH ...13
A. CHOSEN DEVELOPMENT TOOLS13

1. Corona14
a. Architecture/Process14
b. Development Options15

2. Titanium16
a. Architecture/Process16
b. Development Options17

3. PhoneGap18
a. Architecture/Process18
b. Development Options19
c. Appery.io19

B. METRICS ...20
1. User Interface20
2. Program Control20
3. Data Management20

C. DEVELOPED APPLICATIONS21
1. Productivity Application21
2. Game Application23
3. Device-Accessing Application26

D. HYPOTHESIS AND EXPECTATIONS27

viii

IV. APPLICATION DEVELOPMENT PROCESS29
A. CORONA ..29

1. Productivity Application29
2. Game Application39
3. Device-Accessing Application47

B. TITANIUM ..54
1. Productivity Application54
2. Game Application62
3. Device-Accessing Application69

C. PHONEGAP ..75
1. Productivity Application75
2. Game Application82
3. Device-Accessing Application86

V. FINAL ANALYSIS ...91
A. USER INTERFACE91
B. PROGRAM CONTROL93
C. DATA MANAGEMENT94
D. OTHER FINDINGS95

VI. SUMMARY AND CONCLUSION97
A. CLOSING COMMENTS98
B. FUTURE WORK99

1. Security99
2. HTML5 ..99
3. Other Tools100

LIST OF REFERENCES ...101

INITIAL DISTRIBUTION LIST105

ix

LIST OF FIGURES

Figure 1. Smartphone Platform Sales. From [4]. 6
Figure 2. Android OS Versions. From [7]. 7
Figure 3. Developers’ Platform Preferences. From [4]. 8
Figure 4. Platform UI Differences. From [5]. 9
Figure 5. Cross-Platform Application Lifecycle. From

[9]. 12
Figure 6. Corona Architecture. From [11]. 15
Figure 7. Titanium Architecture. From [2]. 17
Figure 8. PhoneGap Architecture. From [14]. 19
Figure 9. Productivity Application List. 22
Figure 10. Productivity Application Instructions and

Add. 23
Figure 11. Game Application. 24
Figure 12. Game Application Options. 25
Figure 13. Device-Accessing Application. 27
Figure 14. Corona Android Productivity Application. .. 30
Figure 15. Corona Android Productivity Application

cont. 30
Figure 16. Corona iOS Productivity Application. 31
Figure 17. Corona iOS Productivity Application cont. . 31
Figure 18. Corona Productivity Application Code—Main

Window. 32
Figure 19. Corona Productivity App Code—Main Window 2.33
Figure 20. Corona Productivity App Code—Scene

Transition. 35
Figure 21. Corona Productivity Application Code—

Database. 36
Figure 22. Corona Productivity Application Code—Touch

Events. 37
Figure 23. Corona Productivity App Code—Touch Events 2.38
Figure 24. Corona Android Game Application. 39
Figure 25. Corona Android Game Application cont. 40
Figure 26. Corona iOS Game Application. 40
Figure 27. Corona iOS Game Application cont. 41
Figure 28. Corona Game Application Main.lua. 41
Figure 29. Corona Game Application Intro.lua. 42
Figure 30. Corona Game Application Game.lua 1. 43
Figure 31. Corona Game Application Game.lua 2. 44
Figure 32. Corona Game Application Game.lua 3. 45
Figure 33. Corona Game Application Options.lua. 46
Figure 34. Corona iOS Device-Accessing Application. .. 47
Figure 35. Corona iOS Device-Accessing Application

cont. 48

x

Figure 36. Corona Android Device-Accessing Application.48
Figure 37. Corona Android Device-Accessing Application

cont. 49
Figure 38. Corona Device-Accessing Application. 50
Figure 39. Corona Device-Accessing Application cont. . 51
Figure 40. Corona Device-Accessing Application 3. 52
Figure 41. Corona Device-Accessing Application 4. 53
Figure 42. Titanium iOS Productivity Application. 54
Figure 43. Titanium iOS Productivity Application cont.55
Figure 44. Titanium Android Productivity Application. 55
Figure 45. Titanium Productivity Application Code. ... 57
Figure 46. Titanium Productivity Application Code. ... 58
Figure 47. Titanium Productivity Application Code. ... 59
Figure 48. Titanium Productivity Application Code. ... 61
Figure 49. Titanium Game Application 63
Figure 50. Titanium Game App Code—UI. 64
Figure 51. Titanium Game App Code—UI cont. 66
Figure 52. Titanium Game App Code—Program Control. ... 68
Figure 53. Titanium Game App Code—Program Control cont.69
Figure 54. iOS Device-Accessing Application. 69
Figure 55. Titanium Android Device-Accessing

Application. 70
Figure 56. Titanium Device-Accessing App Code. 71
Figure 57. Titanium Device-Accessing App Code. 73
Figure 58. Titanium Device-Accessing App Code. 74
Figure 59. PhoneGap Productivity Application. 75
Figure 60. PhoneGap Productivity Application cont. ... 76
Figure 61. Appery.io Productivity Start Screen

Development. 77
Figure 62. Appery.io Productivity Start Screen Data

Response. 78
Figure 63. Appery.io Productivity Steps Page Data

Request. 78
Figure 64. Appery.io Productivity Steps Page Data

Response. 79
Figure 65. Appery.io Productivity Database Create. ... 80
Figure 66. Appery.io Productivity Add Page Data

Request. 81
Figure 67. Appery.io Productivity Start Screen Data

Request. 81
Figure 68. PhoneGap Game Application 83
Figure 69. PhoneGap Game—UI Code. 84
Figure 70. PhoneGap Game—UI Code cont. 84
Figure 71. PhoneGap Game—Program Control Code. 85
Figure 72. Appery.io Device-Accessing Application. ... 86

xi

Figure 73. Appery.io Device-Accessing Start Screen

Development 87
Figure 74. Appery.io Device-Accessing Service

Configuration 88
Figure 75. Appery.io Device Accessing GeoLocation

Response. 88
Figure 76. Appery.io Device-Accessing Camera Response.89
Figure 77. Appery.io Device-Accessing Location Finding.89

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. User Interface Ranking 92
Table 2. Program Control Ranking 94
Table 3. Data Management Ranking 95

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

ADT Android Developer Tools

API Application Programming Interface

App Application

AWT Abstract Window Toolkit

DoD Department of Defense

GUI Graphical User Interface

HTML5 HyperText Markup Language version 5

IDE Integrated Development Environment

NPS Naval Postgraduate School

OpenGL Open Graphics Library

OS Operating System

REST Representational State Transfer

SDK Software Development Kit

UI User Interface

WYSIWYG What-You-See-Is-What-You-Get

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I cannot give enough thanks to my thesis advisor, Dr.

Thomas Otani, for all the invaluable guidance and constant

support that he has provided me the past year.

To soon-to-be Dr. Loren Peitso: Thank you very much

for all the valuable feedback. You got me back on track

when needed and helped get me to a more-professional final

product.

Lastly, thank you to my family, loved ones, and those

that matter for always believing in me—even through all the

difficult times. I am very blessed to have you all in my

life.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Like any other large organization, the United States

Department of Defense employs widespread use of mobile

devices. In addition to productivity increases in business

administration, the effective use of mobile technologies

has the potential of dramatically improving warfighting

capabilities. For example, mobile technologies can help

soldiers identify enemy forces, help engineers order

replacement parts more quickly, and help medical corpsman

diagnose injuries more reliably while in the combat zone.

The DoD currently has an implementation plan in place

that at least “promotes the development and use of mobile

non-tactical applications within the DoD enterprise” [1].

It understands that:

…the application of mobile technology into

globally integrated operations, the integration

of secure and non-secure communications, and the

development of portable, cloud-accessing command

and control capability will dramatically increase

the number of people able to collaborate and

share information rapidly. [1]

This includes the establishment of a common mobile

application development framework to enable operating

system interoperability [1]. The plan to expand the use of

mobile devices and applications throughout the DoD makes

efficient studies of mobile application development

techniques all the more important.

Platforms allow application developers many freedoms

to utilizing smartphone and operating system features, and

that has made it much easier for developers to make

2

applications that help make tasks easier for everyone and

that help everyone interact with each other more

efficiently, effectively, and with greater satisfaction.

A. PLATFORM DIFFERENTIATION

There are many challenges to the process of efficient

mobile application development. The primary one is the

proliferation of mobile platforms. iOS and Android are the

two major platforms, but Android has multiple deployed

variants and there are many other platforms including

Windows, Blackberry, and Symbian. Each of these platforms

has their own distinct architecture and programming

language that developers must understand and adhere to when

creating applications for the specific operating system.

As the mobile market grows and developers write more

applications for multiple platforms, the cost for

developing code for each platform and then implementing,

testing, deploying, and maintaining that code grows in

resources and manpower requirements. In order to meet the

growing demands for more mobile applications on multiple

platforms, we need to find more cost-effective ways to

develop these multi-platform applications.

B. CROSS-PLATFORM DEVELOPMENT

A possible answer to cost-effective development and

maintenance is mobile cross-platform tools. The main

purpose of these tools is to allow one codebase to be

executed on multiple smartphone platforms, with little (if

any) by-platform tailoring necessary.

3

Mobile cross-platform tools are relatively new to the

application-building world. Until the Android OS was

released in late 2008, the only relevant smartphone

operating system on the market that encouraged third-

parties to develop and market mobile applications was

Apple’s iOS. It was not until Android became the iOS’s

foremost competition that mobile cross-platform development

tools became necessary.

While mobile cross-platform application development

tools all have the same goal of helping developers quickly

and more-easily create applications for multiple mobile

operating systems, their approaches can be quite different.

C. GOALS

We will conduct a comparative analysis on three cross-

platform application development tools describing relative

strengths and weaknesses. The DoD and other organizations

can benefit from this thesis by having a better idea of

what kind of tool to consider using when developing their

mobile applications for multiple platforms.

This analysis will be based on the construction of

common components that applications often have and how that

construction compares when we utilize the three chosen

tools.

D. SELECTED CROSS-PLATFORM TOOLS

The three mobile cross-platform tools we study in this

thesis are Corona Lab’s Corona, Appcelerator’s Titanium,

and Adobe’s PhoneGap (with Exadel’s Appery.io). Corona is

a write-once, build-to-many tool that specializes in easing

4

the effort to develop cross-platform game applications.

Titanium allows users to develop native applications across

multiple platforms through the translation of JavaScript to

the respective platforms’ native code. PhoneGap is a

framework for building HTML-based web applications that are

wrapped in minimal native code for deployment, and

Appery.io is a visual tool that utilizes PhoneGap to access

native platform features [2, 3]. Chapter III details the

reasons we chose these specific tools.

5

II. BACKGROUND

Two mobile operating systems, the Android OS and

Apple’s iOS, currently dominate the mobile space. To

ensure an understanding of the importance of cross-platform

development, this section briefly describes the two

platforms, including what constitutes their native look and

feel.

We summarize previous research related to streamlining

the cross-platform development process. Finally, we

describe the cross-platform development lifecycle, which

will be used when developing our own applications in the

next chapters.

A. MOBILE PLATFORMS

According to statistics from the analyst firm called

Vision Mobile, iOS and Android OS mobile platforms have

increasingly dominated the smartphone market, taking more

than 80 percent of sales today (Figure 1). The stable

sales of iPhones and the increasing use of Android-based

devices have forced less successful competitors such as

Microsoft, Blackberry, and Symbian to at least momentarily

cede sales to the strengthening iOS/Android duopoly.

6

Figure 1. Smartphone Platform Sales. From [4].

1. iOS

iOS is a mobile operating system used today for the

iPhone, iPad, and iPod Touch. Derived from the Mac OS X

for desktops, it was released in June 2007 as a focused

operating system intended for small display platforms that

are also more limited in computer memory resources [5].

Objective-C is the programming language used for iOS

application development, and Xcode is the required

Integrated Development Environment (IDE). Xcode only runs

on Apple Mac OS computers.

2. Android

Google’s Android OS version 1.0 was released in

September 2008, after acquiring startup Android, Inc. in

2005 [6]. It continues its frequent updates and

7

improvements with its newest version, Android OS version

4.4 “KitKat”, which has not been released as of this

writing [7].

While the Android platform has branched out to support

different hardware profiles, including screen size, screen

resolution, memory size, processor speeds, and pricing

options, this fragmentation within the platform also

conversely makes it more difficult for developers to

support and deploy to all Android devices. Figure 2

details the percentage of Android-based devices running

specific Android OS versions.

Figure 2. Android OS Versions. From [7].

Applications on Android OS are developed “using a

subset of Java 6 SE API, replacing Swing, Abstract Window

Toolkit, and Applet classes with custom graphics and mobile

development libraries” [5]. They can be developed on

Windows, Macs, or Linux by using the Android Developers

Tools (ADT) plugin with the Eclipse IDE [7]. Applications

are made available for download in Google Play.

8

3. Mobile Application Developer Feedback

Results from a Vision Mobile-conducted survey of 1,200

developers (Figure 3) show that application developers

favor iOS over Android OS on five out of seven aspects,

including the development environment, documentation and

support available, application discovery, potential for

revenue, and as the preferred platform to develop on first.

The Android OS won in the aspects of having less costs for

developers and having a slightly smaller learning curve.

Figure 3. Developers’ Platform Preferences. From [4].

B. PLATFORM LOOK-AND-FEEL

 Smartphone users have certain expectations from third-

party applications. They expect a distinct platform-

consistent user experience that begins when the user opens

the platform’s home screen. For example, Android users

expect the device’s back button to always bring them to the

previous screen, while iOS users expect a back button to be

visible on-screen [8].

9

The similarly underlying structures for user

interfaces (UIs) result in platforms that operate visually

much in the same way [5]. Despite this, there are

considerable differences in developer-visible aspects and

user-visible differences that application developers need

to take into consideration to ensure that users’

expectations are met. This is a developmental aspect that

some cross-platform development tool developers attempt to

ease for the application developers.

1. User Interface Differences

Figure 4 highlights some obvious differences between

Android OS (left) and iOS 6.x (right) user interfaces. It

includes the button widget, alert messages, radio buttons,

and slider bars.

Figure 4. Platform UI Differences. From [5].

10

C. PREVIOUS RESEARCH

Previous mobile cross-platform application development

research at the Naval Postgraduate School was conducted by

Christian G. Acord and Corey C. Murphy. They compared and

contrasted the iOS and Android platforms, applied the

Model, View, Controller pattern to minimize the differences

between the two, and then concocted a unified design

process that could be used to implement native iOS and

Android applications from a single design process, thereby

streamlining the design and implementation for those two

platforms together [5]. They focused on a pattern-based

approach for development and did not study cross-platform

development tools.

D. CROSS-PLATFORM DEVELOPMENT LIFECYCLE

Cross-platform development tools refer specifically to

code and graphical UI (GUI) tools that support the

simultaneous development of applications for multiple

mobile platforms.

There are five stages in the cross-platform

application lifecycle [9], and this thesis will compare and

analyze the first three.

1. Develop

The develop stage refers to the authoring language

(such as JavaScript, Lua, or HTML5), the integrated

development environment (IDE), the emulator, and the

debugger. The cross-platform tool authoring languages

equip developers from backgrounds ranging from traditional

software developers to web developers [9].

11

2. Integrate

The integrate stage refers to integrating the

application with platform-specific device capabilities—

which can be achieved through the use of tool APIs—as well

as connecting to cloud APIs for remote services such as

database connectivity [9].

3. Build

There are many technology approaches to completing the

build stage, including web-to-native wrappers such as

PhoneGap, “application factory” visual design tools like

Appery.io, and runtime execution environment application

abstracting such as Titanium and Corona [9].

4. Publish

The publishing stage includes submitting the cross-

platform application to the target platform application

stores. Publishing can also include managing the

application store publishing process to some degree [9].

5. Manage

Typically offered by enterprise-targeted cross-

platform tools, the application management functionality

largely refers to the updating of applications and also

includes use of analytics tools. Both Appcelerator and

Corona integrate analytics APIs into its tools [9].

12

Figure 5. Cross-Platform Application Lifecycle. From

[9].

13

III. APPROACH

To compare and analyze cross-platform application

development tools and describe relative strengths and

weaknesses, our methodology for this thesis is to first

decide which cross-platform tools to study. Next, we

develop three typical applications using each of these

tools; the application types developed are a productivity

application, a game application, and a device-accessing

application. During the development process we collect

data on the process and tool usage which will be focused on

both common application components as well as more general

tool observations during the development of these

applications.

The smartphone devices used for testing are an iOS-

based Apple iPhone 4 and an Android-based Samsung Galaxy S

III. For user interface analysis this chapter also

includes, from both devices, screen captures of each

application that was developed using each tool.

A. CHOSEN DEVELOPMENT TOOLS

Of the over 100 cross-platform development tools in

the market today [9], we selected Appcelerator’s Titanium,

Corona’s Corona SDK, and Adobe’s PhoneGap (with Exadel’s

Appery.io) as the tools to be analyzed for the following

reasons:

 They fall under differing technology approach

categories (described in Chapter 2 under the

build stage of the cross-platform application

development lifecycle) and can each represent

broad categories [9].

14

 They are well established with funding, company

maturity (they are no longer start-up companies),

and a large customer base [9].

 Constraints in time that limit the number of

tools that we can use for this thesis.

1. Corona

The Corona SDK was created by Corona Labs (previously

known as Ansca Mobile) in 2008 to establish itself in the

mobile market as a viable contender for iOS and Android

cross-platform development [10]. It is a development

suite, software development kit (SDK), and runtime

environment. Notable characteristics of Corona include 1)

its physics and graphics engines, 2) the lightweight Lua

scripting language, 3) building applications on Corona

Labs’ servers rather than locally, 4) a one-click emulator

that allows for quick testing, and 5) detailed and well-

organized documentation and third-party support.

While its focus is largely on cross-platform game-

oriented applications, Corona has expanded its support for

other types of applications, including business

applications and the ability to access platform features

[10].

a. Architecture/Process

Though Corona is a closed-source engine and

development kit, leaving developers access to little more

than the interface, we were able to learn a bit about the

architecture and process. When building code, the Lua

script is optimized and pre-compiled into bytecode before

being sent to the server. The server then embeds the

15

bytecode into the Corona C/C++ based engine, which includes

a rendering engine, OpenGL (Open Graphics Library), OpenAL

(Open Audio Library), and Box2d (for physics) [11]. Figure

6 visualizes the Corona Engine and the layers above it.

The rest of the process is not available to the public.

Figure 6. Corona Architecture. From [11].

b. Development Options

There are three subscription options for

developers who wish to use Corona SDK: Starter, Pro, and

Enterprise. Starter is used for this thesis, which is the

free option and allows us the use of the emulator and

debugger, the testing of builds on actual devices, access

to many developer resources (which connected us to others

in the Corona community), and the publishing of Corona

applications to application stores as well. The Pro

version costs $49 monthly and adds premium support, in-app

purchases, and daily software updates on top of what

Starter offers. The most-expensive Enterprise version

costs $199 monthly but adds features such as allowing

developers to access native libraries and to create native-

16

based Corona APIs [10]. Though premium support and access

to native libraries may have provided some benefit to our

analysis, the Starter option provides us with enough data

points to effectively compare Corona SDK to our other

selected tools.

2. Titanium

Appcelerator’s Titanium SDK began supporting mobile

cross-platform development in 2009. Like Corona, it has a

one-codebase-to-multiple-platforms philosophy. One of its

many differences is that it provides access to numerous

native application program interfaces (APIs), thus making

many user interface (UI) interactions, UI animations, UI

effects, and some platform specific calculations completely

native [12].

JavaScript is Titanium’s primary development language

(though HTML and CSS are also options). The Titanium

development environment is an Eclipse-based IDE.

Titanium has access to most of the iOS and Android

platform features. Support for Blackberry and Windows

Phone are planned [12] in this tool’s attempt to reuse code

with a unified JavaScript API while at the same time

supporting unique features of the specific devices.

a. Architecture/Process

The Titanium architecture includes 1) the

JavaScript source code inlined into a Java or Objective-C

file and compiled as an encoded string, 2) the

implementation of the Titanium API in the platform’s native

programming language, and 3) a JavaScript interpreter.

17

When launched, an application has a JavaScript execution

environment created in native code. Inside that

environment are JavaScript objects which all have a paired

object in the native code. These objects are what act as

the bridge between JavaScript and the native code [2].

Figure 7 visualizes the architecture of Titanium SDK.

Figure 7. Titanium Architecture. From [2].

b. Development Options

Titanium is open source with a permissive

license, so developers have freedoms to modify and extend

the framework with functionalities they need. It can be

downloaded free but there are many different pricing

options for additional features like security and other

enterprise extensions. Of note, popular applications that

were created from Appcelerator’s Titanium include NBC’s

application and official applications for various

universities [12].

18

3. PhoneGap

Adobe’s PhoneGap began development in 2008 at an

iPhoneDevCamp [13]. This product creates a web application

embedded in a native wrapper, where it is then treated as a

native application. The native wrapper provides JavaScript

APIs to give access to the respective platform’s features,

such as contacts, the file system, camera, microphone, and

GPS. The application is built using HTML, CSS, and

JavaScript, logically targeting those with web development

experience. Phonegap supports iOS, Android, Blackberry,

Windows, Symbian, and Bada [13].

This thesis will use the PhoneGap-implementing cross-

platform tool called Appery.io for PhoneGap-related

research.

a. Architecture/Process

A PhoneGap application is a web application

“wrapped” in native code. This means that JavaScript files

are included in a page loaded by the native device’s web

browser widget (also known as a web view). A JavaScript

API is created inside a web view which can asynchronously

send and receive messages with the native wrapper code.

This “bridge” is implemented differently in each platform,

and it is what allows local web applications to call native

code and the native device’s features [2]. To ensure

clarity, note that there are two instances where JavaScript

is used: the business logic part, which drives the UI and

its functionality, and the part which accesses and controls

the given device.

19

Figure 8. PhoneGap Architecture. From [14].

b. Development Options

PhoneGap, like Titanium, is open source with a

permissive license. There are tool options that utilize

and build on top of PhoneGap such as PhoneGap Build and

Appery.io. PhoneGap Build is a cloud-based building option

built on top of PhoneGap, which is what we employ for our

PhoneGap game application.

Products to note that have been made with the

help of PhoneGap include the BBC Olympics application and

Wikipedia [13].

c. Appery.io

Exadel’s Appery.io (previously known as Tiggzi)

is a visual, what-you-see-is-what-you-get (WYSIWYG), cloud-

based development environment that employs PhoneGap as the

bridge to access device-native features [3]. It requires

no downloads to use, and uniquely takes advantage of QR

codes to give developers the ability to quickly test their

products on their phones.

20

B. METRICS

An important aspect of developer productivity is how

well tools will let the developer specify elements common

in most applications. Three common components that many

(if not most) applications have are the user interface,

program control, and data management. Thus, this thesis

will examine these tools and the differences between how

each tool can construct each component. Other metrics that

are related to these three include the amount of setup a

developer must invest in, the number of lines of code that

components consist of in each tool, and the level of

abstraction offered.

1. User Interface

The component that is visible to the application user

is the user interface. This includes widgets such as those

detailed in Chapter 2.

2. Program Control

Program control is the component that refers to domain

logic, control logic, and event handling. It is the part

that responds to the end-user’s commands and also performs

automated tasks that are structured into the application

[15].

3. Data Management

Data management refers to the method that an

application uses to access and query databases. This

includes both onboard and off-board memory storage.

21

C. DEVELOPED APPLICATIONS

We describe the three applications that we developed

using each of the three tools. These applications were

chosen because they apply the kind of aspects that we

expect in a mobile application. For each application, we

will describe the reasoning behind developing it, the

desired design, and the application from the perspective of

the user.

1. Productivity Application

Productivity applications represent mobile software

that have the goal of enhancing time efficiency and task

success. They include tools that help users create and

manage documents, organize schedules, store data via cloud

services, calculate finances, and increase communication

options.

The productivity application that we have chosen to

create is a recipe collection application. It gives users

a simple method of organizing recipes by use of database

operations via an intuitive UI. Users can view recipes by

name in a list and then select a recipe for a more detailed

explanation. Users can also add new entries and delete old

entries from the application.

This application allows us to study how the tools

support data-oriented operations. It allows us to study

the key APIs (including lists, forms, buttons, scene

changing, and database operations) that may be notably

different in each tool. It also gives us many

22

opportunities to test the differences between each of tools

in regards to how they handle each of our component

metrics.

Figure 9. Productivity Application List.

Figure 9 shows a list of recipes stored in the

database. When a user selects an item, the application

will locate the required data (the recipe instructions) and

display it in a customized display panel (Figure 10, left).

The user can also delete an entry by tapping the delete

button along with the item to delete. Users can add a new

recipe by tapping the add button whereupon the screen will

transition to a different view for inputting a recipe’s

name and instructions (Figure 10, right).

23

Figure 10. Productivity Application Instructions and

Add.

The instructions screen and the add screen both have a

back/cancel button that transitions the user back to the

list page. The add screen has two textboxes for user input

as well as an add button for the user to submit the recipe

to the database and then go back to the list screen where

they can view all the recipes—including the latest

addition.

2. Game Application

Mobile game applications dominate the mobile world.

Development of a game application was chosen not just for

its market size, but its relevance to the Department of

Defense; the DoD relies heavily on simulations, which share

many aspects of game applications. Techniques necessary to

24

build games are also directly applicable to building many

of the DoD relevant applications.

With our game application, we highlight event-handling

as well as the physics and graphics components of each of

the three cross-platform development tools, including their

levels of abstraction.

The game that we have chosen to create is a simple

“ball catching” application. It begins with a ball falling

from the top of the screen and a timer counting down until

the game is over. The goal of the game is to repeatedly

tap the ball in order to keep it from falling out of view.

Tapping the ball causes it to travel to a random new

position on the screen where it will continue its fall.

Figure 11. Game Application.

25

Figure 11 (left) is a start screen that introduces the

game. The user only needs to tap the screen to begin

playing, the first of multiple event-handlers.

Figure 11 (right) is the game screen. The top of the

screen includes the score, the countdown timer, and an

options button for the user to access the settings screen.

There is a platform near the bottom on which the ball will

bounce upon collision, helping the player to keep the ball

on the screen. After the timer has ended, the user’s final

score is displayed.

Figure 12. Game Application Options.

The options screen (Figure 12) includes a slider bar

so that the user can change the number of seconds in a

26

game, representing data handling from screen to screen.

Tapping the confirm button applies the change.

3. Device-Accessing Application

Development of a device-accessing application was

chosen because, for a mobile development tool to be truly

cross-platform, we have to be able to take advantage of a

mobile device’s physical features.

The application that we will develop utilizes each

cross-platform development tool’s ability to apply

smartphones’ geolocation and camera features. It pinpoints

the devices location as well as the location of any input

addresses onto a map. Both features are supported by key

APIs and, thus, they are aspects of both the user interface

and program control components.

27

Figure 13. Device-Accessing Application.

Figure 13 is the design concept. Under the name of

the application is a textbox where the user can enter a

location. Upon selecting the “show on map” button, the

application will display the given location on the onscreen

map. When the user selects the “find my location” button,

the application utilizes the device’s geolocation feature

to determine its location and pinpoint it on the same map.

If the user selects the “take photo” button, the

application will go to the camera screen where the user can

take a photo by utilizing the device’s camera feature.

D. HYPOTHESIS AND EXPECTATIONS

When the three tools are compared to each other based

on each metric we expect the following:

28

 In regards to the user interface component, each

of our tools (based on our device screen

captures) has already proven that they offer the

functionalities necessary for developers to

create similar UIs to their counterparts. The

level of program abstraction offered by tools

will help determine the ease that developers will

have in developing the UI as well as the other

components.

 For the program control component, event-handling

is where we gain the most experience for our

analysis. While the Corona tool—due to its focus

and relative maturity—will offer the most APIs

for physics and graphics, Titanium will give

developers the most ease to handling native

widget-related event functions.

 In regards to the data management component, the

programming language and method used will affect

the results. Though Appery.io (with PhoneGap)

will provide the most ease for database use,

Titanium and Corona with their use of SQLite3

will still be able to handle the same operations.

29

IV. APPLICATION DEVELOPMENT PROCESS

In this chapter we detail each of our iOS/Android

cross-platform applications that we developed with each

tool, describing especially important portions of our

application code and elaborating on code worth analyzing.

A. CORONA

1. Productivity Application

Figures 14 and 15 are screenshots of the final

productivity application as seen on the Samsung Galaxy S3

smartphone. Figures 16 and 17 show the same scenes but the

screenshots were taken from Apple’s iPhone 4. The only

difference in the code used in each platform was the theme

set, which are Lua files with theme tables that correspond

to individual widgets [16]. This is Corona’s attempt to

provide a native look to application UIs when running on

either iOS or Android platforms. Note how the slider

objects are tailored to match the operating system. These

are loaded images made to imitate the look of sliders that

are created natively.

30

Figure 14. Corona Android Productivity Application.

Figure 15. Corona Android Productivity Application

cont.

31

Figure 16. Corona iOS Productivity Application.

Figure 17. Corona iOS Productivity Application cont.

In the main window, there is a table view and two

buttons. Figures 18 and 19 include the Lua statements to

construct the main window.

32

Figure 18. Corona Productivity Application Code—Main

Window.

Here the widget library is included and platform

themes are set. The widget library includes (but is not

limited to) buttons, textboxes, and table views (lists),

all of which we are using in this particular application.

A titlebar is created to go at the top of the screen

as well as the embossed text to go on the titlebar. The

titlebar is simply a colored rectangle object while the

text is a text object positioned directly over the

rectangle.

33

Figures 18 through 20 show the code to display objects

and widgets on the main window.

Figure 19. Corona Productivity App Code—Main Window 2.

The onRowRender() function is a listener for the

tableview where, when the list’s insertRow function is

called, it renders a new row. The list’s insertRow

function is called for every index in onerecipe. The Add

and Delete button widgets are created and positioned on

screen.

34

Events in Lua, which are the main way of creating

interactive applications in Corona, are handled similarly

to how they are in Titanium’s JavaScript: by placing an

event as an argument in functions such as local function

name(event).

When an item in the list is selected (by the end-user

tapping on it), the second window appears on the screen to

show the details of the selected item. This transition

from one window to another is achieved by handling the

onRowTouch() event. onRowTouch() relies on a flag’s

condition as to whether it will delete a touched row

(including the associated table row and array index) or

switch the screen to the recipe steps screen. The relevant

code for this transition is as follows (Figure 20):

35

Figure 20. Corona Productivity App Code—Scene

Transition.

The recipe data are managed by the backend relational

database called sqlite3, which is a lightweight database

management system optimized for limited-capacity devices.

The recipe database is created when the application is

executed for the first time. We detect the existence of a

database at the program startup. If no database is

36

detected, it is created. If the database already exists,

then it is used in the program.

Back in Figure 18 we go through the database table via

the SELECT* query and store each entry into a Lua list,

also keeping track of the number of recipes so that we can

properly display them in the UI tableview (list) [17].

The database detection and creation is done as follows

(Figure 21)[18]:

Figure 21. Corona Productivity Application Code—

Database.

A variable that holds the “create database table”

query is executed. Then, variables that hold “insert

database row” queries are executed. The database table

includes both the recipe names and the recipe steps.

The end-user can add a new recipe and also delete any

existing recipe by tapping the corresponding Add and Delete

buttons. The touch events for the two buttons are

implemented as follows (Figure 30):

37

Figure 22. Corona Productivity Application Code—Touch

Events.

In the addButtonPress event handler function, two

textbox widget objects are created and set to isEditable,

while other onscreen widgets are set to not visible. The

deleteButton event handler just changes the value of the

flag used for onRowTouch(). The submitButtonPress function

(in Figure we) updates the database table with the INSERT

or REPLACE query, updates the onerecipe array, and then

transitions the user back to the list screen.

38

Figure 23. Corona Productivity App Code—Touch Events 2.

Corona’s transition library was used on occasion when

transitioning from one scene to another. It provides

functions that animate objects during that time (e.g.

changing positions or at a specified rate increasing or

decreasing alpha, which is an object’s opacity).

39

2. Game Application

Figure 24 through 27 show the screens of the

finished product on Android and iOS devices. Besides the

platform-specific fonts and screen dimensions, they are

visually the same.

Figure 24. Corona Android Game Application.

40

Figure 25. Corona Android Game Application cont.

Figure 26. Corona iOS Game Application.

41

Figure 27. Corona iOS Game Application cont.

Figure 28. Corona Game Application Main.lua.

Figure 28 is a screenshot of main.lua, the first

of four Lua files for our game application using Corona

SDK. This file contains no predefined widgets. The UI of

this application is mainly composed from graphic objects.

We require the third-party-developed director class rather

than the Corona storyboard class for scene changing in this

particular application—this allows easy calling of new

scenes to the display. Open source third party classes,

like the rest of Corona’s community support, are numerous

and can be found in Corona’s developer website. The

42

director class’s changeScene function is used in the other

Lua files with a screen object’s event listener,

recognizing the new scene as e.target.scene [20].

Intro.lua, rather than main.lua, is the first scene that

the user sees (Figure 29):

Figure 29. Corona Game Application Intro.lua.

For files to utilize the director class,

module(…,package.seaall) must be included so that seeall

from the package in the project folder—which allows the use

of main’s changescene()—can be used Also, the rest of the

code must be enclosed in function new(). A text object is

created with a touch event handler to take the user to the

game screen (Figure 30).

43

Figure 30. Corona Game Application Game.lua 1.

In game.lua, the physics library is required to

utilize Corona’s Box2d-like physics engine. Create on-

scene UI objects theball and floor (which is a circle

object and an image object, respectively) and add them as

two bodies that have physics characteristics. The former

is affected by gravity while the latter is static. Both

have a bounce quality to it when physically colliding with

another UI object.

44

Figure 31. Corona Game Application Game.lua 2.

Game.lua continues in Figure 31, where there are

three functions: pressOptions(event) is the event handler

for the options text object pass the option scene to main

as the scene to change to, theball:tap(event) utilizes the

transition library to move the ball to a random screen

position, and addSetText() helps setting and changing the

position of text [21]. The shape object’s setFillColor

option here randomly changes the ball’s color.

45

Figure 32. Corona Game Application Game.lua 3.

In Figure 32, the timer counts down once every

1500 milliseconds. Memory is deallocated for the timer

object at line 85 and we give the restart text an event

listener. Finally, on-scene objects are inserted into

gameGroup and when that is returned all those objects are

removed from the screen.

46

Figure 33. Corona Game Application Options.lua.

Figure 33 shows options.lua. We create two

widget objects, a button and a slider. The button object

has an event listener for a director class scene change

just some of the aforementioned objects do. The

sliderListener updates the global variable _G to a time

between 0 and 10.

47

3. Device-Accessing Application

Figures 34 through 37 show the screens of the

finished product on Android and iOS devices. Besides the

platform-specific maps used, they are visually the same.

Figure 34. Corona iOS Device-Accessing Application.

48

Figure 35. Corona iOS Device-Accessing Application

cont.

Figure 36. Corona Android Device-Accessing Application.

49

Figure 37. Corona Android Device-Accessing Application

cont.

The following four figures (38 through 41) are

screenshots of our code. They include UI object creation

for our buttons, map, and textbox, as well as event-

handling for accessing the device’s camera and geolocation.

50

Figure 38. Corona Device-Accessing Application.

Figure 38 shows how we create and then add on screen

the button widgets, which are images. The mapView is

created later within the map button event-handlers (Figure

39). By including Corona’s Widgets API, few lines of code

are necessary to create and then position a map.

51

Figure 39. Corona Device-Accessing Application cont.

button1Release() uses the Map widget’s requestLocation

function to take text from the inputField and find its

location on the map via mapLocationHandler (Figure 40).

button2Release() initializes the map to a given location,

fetches the device’s current location using

getUserLocation(), and then centers the map on that

location.

52

Figure 40. Corona Device-Accessing Application 3.

mapAddressHandler() displays an alert with the current

location, which uses Map’s nearestAddress() method to find

the nearest address based on the given longitude and

53

latitude. mapLocationHandler() centers the map on the

coordinates and adds a pin to the map representing the

location.

Figure 41. Corona Device-Accessing Application 4.

Figure 41 describes how to access the device’s

camera. In button3Release(), if available the media.show

function will open the interface to the camera (and photo

library as well). showPhoto() is the listener that handles

the returned image and positions and sizes the image on

screen.

54

B. TITANIUM

1. Productivity Application

Figures 42 through 44 show the screens of the

finished product on Android and iOS devices. Note the

placement of the add and delete buttons on each platform;

with one codebase, we utilize conditional branching in our

code to access some native button aspects depending on the

platform in use.

Figure 42. Titanium iOS Productivity Application.

55

Figure 43. Titanium iOS Productivity Application cont.

Figure 44. Titanium Android Productivity Application.

In the main window, there is a list (table view) and

an Add button. Figure 45 is a screenshot of Recipes.js,

56

which includes JavaScript statements to construct this

window. We create a window, add the table view, retrieve

the data from the database by row, and create an add button

based on the platform. The “Add Recipe” button is only

added to the window when the application is on an Android

device. The “+” button is right-of-title navigation button

only visible on iOS devices.

57

Figure 45. Titanium Productivity Application Code.

When an item in the list is selected (by the end-user

tapping on it), the second window is displayed to show the

details of the selected item. This transition from one

window to another is achieved in SetDataFile.js (Figure

46). When filling in each row of the list view with

58

database entries, we set the path to onerecipe.js (Figure

47), where details of the chosen recipe are coded to be

displayed.

Figure 46. Titanium Productivity Application Code.

As shown in Figure 46, the backend database in

Titanium is managed in a manner analogous to the one in

Corona.

In onerecipe.js (Figure 47) we create a delete button

and add it to the recipe steps window only when on an

Android device. We also update the row count of the

database so that it will continue to be properly displayed

in the list view screen [19].

59

Figure 47. Titanium Productivity Application Code.

AddWindow() is the function that leads to the screen

that add recipes. The event for the add button addRecipe()

is implemented in Figure 48, where we use a basic SQL

60

insert command and then update the rows in the list screen

to match the updated database.

The delete button event handlers for the application

on iOS and Android platforms are implemented on Figures 45

and 47, respectively, where we use a basic SQL delete

command and then also update the rows in the list screen to

match the updated database.

61

Figure 48. Titanium Productivity Application Code.

62

2. Game Application

Until September 2013, there was no complete Titanium

tool or library to conduct mobile game development [22].

Though an open source Box2d module was introduced by

Appcelerator back in September 2011, it supported only a

limited number of Box2d APIs, had little documentation, had

not been improved upon in a long time, and could only be

used on a single platform—iOS [23].

Appcelerator is now funding a mobile gaming startup

company called Lanica, whose co-founder was also the co-

founder of Corona SDK. Lanica has “developed a JavaScript-

based tool set called Platino that will allow Titanium SDK

developers to create high-performance games” [24]. Due to

the limited time we had to work with Lanica, much of the

code we use is adopted from Lanica’s sample code and

documentation [22], and we also did not include code for

either a home screen or an option screen. Figure 49 is a

screenshot of our Titanium-Platino game application.

63

Figure 49. Titanium Game Application

The user interface consists of the game screen, the

ball object, and the floor object. Figure 50 and 51 are the

JavaScript statements to construct this window.

64

Figure 50. Titanium Game App Code—UI.

Using the Platino game engine with the Titanium SDK

requires that we use the Chipmunk2D physics engine, which

is a “simulation layer that handles complex physics

calculations…” [25]. Both Platino and Chipmunk 2D operate

independently from one another so the developer must

properly sync data from the two layers together so that

sprites on screen can visible handle physics correctly.

65

After we require the Chipmunk2d module and create the

game screen, the locationInView function must be created to

convert screen touching coordinates to Platino coordinates.

Other functions must be created by the developer to

compensate for differences between Lanica’s Platino and the

Chipmunk physics engine that it employs, which include

screen coordinates differences (the y-values in each are of

opposite values) (Figure 50) and angles (radians verses

degrees) [25].

66

Figure 51. Titanium Game App Code—UI cont.

Each of the UI objects used in this application is a

sprite, which is a two-dimensional image used as a part of

67

the game world. In Figure 51, we show how Platino (with

the Chipmunk 2D module) allows these objects to react to

physics by using structures in the

createSpitesMomentsBodiesAndShapes function.

Event-handling is necessary for tapping the ball,

having the ball respond to gravity, and collision events

between the ball and floor. Figure 52 includes the code

necessary for the application to handle these events.

Begin is one of multiple functions used as a part of a

collision handler container. Arbiters are the “structures

that contain references to the two bodies that are involved

in the collision…” [25].

68

Figure 52. Titanium Game App Code—Program Control.

Figure 53 shows the event listener for the Android

backbutton, a simple Android-specific JavaScript that does

not have to be removed or modified when building for the

iOS.

69

Figure 53. Titanium Game App Code—Program Control cont.

3. Device-Accessing Application

Figures 54 and 55 show the screens of the finished

product on Android and iOS devices. Note how Titanium uses

widgets based on the platform the application is deployed

on; one codebase outputs native buttons and platforms and

maps (iOS uses Apple Maps and Android uses Google Maps).

Figure 54. iOS Device-Accessing Application.

70

Figure 55. Titanium Android Device-Accessing

Application.

The user interface (including the buttons, textbox,

and map) and program control (including event-handlers and

access to device features) are implemented in Figures 56

through 58.

In Figure 56, we first require the geo.js module so

that we can later access the forwardGeocoder and

reverseGeocoder methods to convert between addresses and

geographic coordinates [26]. UI objects are created,

positioned, later added to the View container, and then

added along with the View to the window.

71

Figure 56. Titanium Device-Accessing App Code.

Figure 57 and 58 show our event-handlers. Upon

opening, we create a MapView and add it to the screen. The

plusButton click-event listener uses forward geocoding to

locate the textfield inputted address and display the

72

location on the map using coordinates. For the photobutton

listener, we utilize Titanium’s Media.showCamera function

show the camera and then, upon successfully receiving a

photo from either the camera or the photo library, an

imageView is created with the photo and then added to the

view.

73

Figure 57. Titanium Device-Accessing App Code.

74

Figure 58. Titanium Device-Accessing App Code.

75

C. PHONEGAP

1. Productivity Application

Figures 59 and 60 show the screens of the finished

product on both Android and iOS devices. Since it is a web

application embedded in a native wrapper, it looks visually

the same on each device. Appery.io (utilizing PhoneGap) is

the development tool that we used.

Figure 59. PhoneGap Productivity Application.

76

Figure 60. PhoneGap Productivity Application cont.

In the main window, there is a list view and two

buttons. Figure 61 displays how we construct this window.

Notice the drag-and-drop UI components as well as the

properties sidebar, which provide for codeless development.

Appery.io’s visual editor is used extensively for each of

the three metric components.

77

Figure 61. Appery.io Productivity Start Screen

Development.

When an item in the list is selected (by the end-user

tapping on it), the second window is displayed to show the

details of the selected item. This transition from one

window to another is achieved by the set local variable and

navigate to page actions.

The event-handler bar displays the events we’ve

selected. To invoke the service that adds all database

items to the UI list, we add it to the page and then edit

its response mapping as shown in Figure 62. The name $ is

the array of all recipes, and we map each recipe to the UI

list. Recipe is the name of the specific recipe. _id is

the key used later by the steps page to retrieve the

details of the specific recipe.

78

Figure 62. Appery.io Productivity Start Screen Data

Response.

Figure 63. Appery.io Productivity Steps Page Data

Request.

79

In Figure 63, we get the recipe’s ID from local

storage and map it as the object ID. In Figure 64 the

recipe name is mapped to the upper textbox and the recipe

steps map to the lower textbox. Both the recipe name and

steps have the ID as the key.

Figure 64. Appery.io Productivity Steps Page Data

Response.

The recipe data are managed by Appery.io’s cloud-based

relational database. An advantage of this is that the only

time local storage is required is when saving a recipe ID

so that it can be deleted on command. Another advantage is

that Appery.io databases can import and utilize REST

(representational state transfer) APIs to conduct many

services, including loading, adding, and deleting [27].

Local storage for this application’s database is possible

by utilizing SQLite3, that requiring coding on top of

visual editing [27].

80

Database table creation is done by simply adding a

recipe and steps column to the recipes data collection and

filling in any entries (Figure 65).

Figure 65. Appery.io Productivity Database Create.

The end user can add a new recipe and also delete any

existing recipe by tapping the corresponding add and delete

buttons. The tap events for the two buttons are implemented

in Figure 66 and 67, respectively.

81

Figure 66. Appery.io Productivity Add Page Data

Request.

The create service maps the inputs from the text boxes

to the recipe and recipe steps. The delete service only

requires the mapping of the recipe ID (obtained from local

storage again) to the object ID.

Figure 67. Appery.io Productivity Start Screen Data

Request.

82

2. Game Application

As September, 2013, Appery.io does not support a tool

for graphics-based games. Its niche in the cross-platform

application development world is to be a “cloud-based

platform with visual development tools and integrated

backend services” [3], mainly benefitting those who intend

on building enterprise applications [3].

PhoneGap itself can be used though. A game can be

developed as if intended for use in a browser, but instead,

wrapped in a native platform wrapper by using PhoneGap.

Figure 68 is a screenshot of our PhoneGap game application,

where we used HTML5 to create a web application and then

PhoneGap Build for the company server to build the

platform-specific version of our application. Due to the

limited time we had to work with PhoneGap Build, we did not

include code for either a home screen or an option screen.

83

Figure 68. PhoneGap Game Application

We used HTML5 and JavaScript to create the web

application. Construction of the UI objects and event-

handlers was accomplished as follows (Figures 69 through

71):

84

Figure 69. PhoneGap Game—UI Code.

Figure 70. PhoneGap Game—UI Code cont.

85

Figures 69 and 70 show how a function is used to

create a Ball object with size, position, and speed

attributes. After a canvas the size of a mobile screen is

drawn, the addBall() function creates a new ball object and

adds it on screen. The floor ID from the HTML body is used

to include the floor image in the canvas.

Figure 71. PhoneGap Game—Program Control Code.

While Figure 71 includes some UI related code, the

intention of this figure is to show how physics and event

86

handling is applied. Lines 8-10 are the conditionals that

include formulas for simulating gravity and bouncing upon

collision. canvasClick() is our touch event-handler that

changes the Ball object’s speed attributes based on if the

canvas coordinates of the touch event matches the canvas

coordinates of the ball.

3. Device-Accessing Application

As with the productivity application, we use Appery.io

with PhoneGap to develop our device-accessing application.

Figure 72 shows the screens of the finished product, which

looks visually the same on both Android and iOS devices.

Figure 72. Appery.io Device-Accessing Application.

The user interface, including the Google Map component

and the Image component, is constructed using the visual

editor like in the productivity application (Figure 73).

87

Figure 73. Appery.io Device-Accessing Start Screen

Development

Both the camera and geolocation services, which are

provided by the PhoneGap bridge, are added to the

application. Both services are pre-configured, and Figure

74 shows the configuration of the camera service.

88

Figure 74. Appery.io Device-Accessing Service

Configuration

Figures 75 and 76 detail two of our event-handlers:

how we map our data from the service to the respective UI

component after a button has been tapped.

Figure 75. Appery.io Device Accessing GeoLocation

Response.

89

Figure 76. Appery.io Device-Accessing Camera Response.

In Figure 77, we demonstrate how JavaScript can

functions can be edited, like how the platform-specific

source code and web application PhoneGap code can be.

Figure 77. Appery.io Device-Accessing Location Finding.

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

V. FINAL ANALYSIS

In this chapter we conduct our comparative analysis on

our three mobile cross-platform development tools. This

includes discussion on the challenges and approaches that

we took. As described in Chapter 3, we analyze three

cross-platform development tools in three areas: user

interface specification, program control, and database

management. We include tables ranking the relative

productivity we had when using each development tool on

each application by component, and with a rank of “1” as

the most productive of the three. By conducting our

research through the development of applications, we have

learned more differences as well as similarities between

the productiveness that developers can achieve when using

each of three tools.

A. USER INTERFACE

While the drag-and-drop ease that Appery.io’s visual

editor provided us when creating the user interfaces of the

productivity and device-accessing applications resulted in

the most productivity, the coding required for both Corona

SDK and Titanium SDK for this component were trivial due to

the clear documentation and matured APIs. For example, we

used Corona’s Widgets API to create buttons imitating the

product of platform-specific code, and we also used it to

have images represent the buttons. For Titanium, adding a

swipe-left-to-delete handler for list rows (which is

commonly used in iOS applications) was simple and only

92

required a conditional to support the add data

functionality when installed in the Android platform.

The construction of UI objects for the graphics and

physics-focused game application was similar with each

tool. HTML5 canvas feature was used for the PhoneGap

application but it did not have as many features as the

other tools. The physics aspects of the games are what

work quite differently, and that will be discussed next.

We rank each tool in terms of developer user interface

productivity as follows:

USER INTERFACE RANKING

Corona Titanium PhoneGap

Productivity 2 2 1

Game 1 3 2

Device-Accessing 2 2 1

Table 1. User Interface Ranking

For both our productivity and device-accessing

applications, PhoneGap (via Appery.io) proved to be the

tool that we found the most ease from when developing the

user interface. Its visual editor was intuitive and worked

for us as intended. It, though, does not offer as much of

the code-level UI construction capabilities as either

Corona or Titanium.

When constructing the user interface for the game

application, Corona’s graphics focus allowed us to the best

resources (including APIs and documentation) to include

both the shape object and the floor image on screen.

Despite the limitations imposed by using HTML5 canvas with

93

PhoneGap, Titanium’s poor graphics documentation and

confusing application of Platino resulted in us still

ranking PhoneGap ahead of Titanium in this area.

B. PROGRAM CONTROL

Using PhoneGap Build to wrap an HTML5 application was

a simple process that only required uploading the HTML5

files to the PhoneGap server, where it would be returned as

a platform-specific application build. Despite the

simplicity of our game application, many lines of

mathematics driven code had to be written to simulate

physics, whereas APIs in Corona and Titanium did away with

the extra work. We found HTML5 to be too new and we only

hope that its canvas will mature into a more graphics and

physics friendly development tool so that it will be

capable of being used for more intensive games and

simulations.

We conclude that Corona ranks ahead of Titanium in the

game area mainly because of the tools’ focus towards two-

dimensional graphics and physics. Appcelerator had only

recently adopted and begun funding Lanica’s Platino, and

the extra code required, especially that code written for

tying Chipmunk 2D physics with on-screen objects, helped

lean us towards Corona for gaming early in the development

process.

Each of the three tools had the necessary APIs to make

access to device-specific geolocation and camera features

straightforward. Any JavaScript modules, REST services, or

platform-specific permission changes were clearly defined

in the each tools’ documentation.

94

Our tools’ constructions of event-handling functions

were similar when used in our productivity and device-

accessing applications. Titanium was given the highest

ranking when used for the productivity application because

of the way conditionals could be used to support event-

handlers when the tool is used to support a platform-

specific look-and-feel, such as the different platform-

specific back buttons.

Appery.io (using PhoneGap), with its very different

visual development approach, enabled a high level of

productivity when developing our productivity and device-

accessing applications. We did not have to be concerned

with syntactical errors, and although little code was

necessary, there was always the option of reviewing and

editing the resulting code.

Table 2 graphically represents our ranking of tools’

developer program control productivity:

PROGRAM CONTROL RANKING

Corona Titanium PhoneGap

Productivity 3 2 1

Game 1 2 3

Device-Accessing 2 2 1

Table 2. Program Control Ranking

C. DATA MANAGEMENT

For the data management component, the only

application where a database was used was the productivity

application. Both Corona and Titanium approached this by

using SQLite3 within the code itself. PhoneGap (with

95

Appery.io), on the other hand, required that we create a

database first. Manipulating data was made convenient with

REST APIs, but there was still a learning curve to applying

these APIs, and local database storage is possible but

requires coded JavaScript rather than just the visual

editor. We found it easier to sacrifice the ease of the

visual editor for use of SQLite3. We visualize our tool

rankings for developer data management productivity in

Table 3.

DATA MANAGEMENT RANKING

Corona Titanium PhoneGap

Productivity 1 1 2

Game n/a n/a n/a

Device-Accessing n/a n/a n/a

Table 3. Data Management Ranking

D. OTHER FINDINGS

Throughout the course of this thesis, we have made

observations that do not quite fit into our three main

metrics but, none-the-less, are still important in regards

to cross-platform application developers’ productivity.

Each of these three tools follows a layered

architectural style. Each has developers operating at the

top level by abstracting out the highest level that devices

use for developer’s code. This leads to savings in time,

effort, and resources for companies that want their product

on multiple platforms. Unfortunately, this often leads to

holes in the connectors between the levels which appear

when there are updates to platform layers which the cross-

96

platform tool was not prepared to immediately adapt to.

This can leave developers to a temporary drop in

productivity while waiting for these updates to be

supported by their tool, as in our case when we were

waiting for Corona to support Android smartphones’ cameras.

A similar related instance was when our Xcode was altered

enough during an update to prevent Titanium from building

iOS applications. Our solution to this was to find and

reinstall the previous Xcode update.

Device simulators were very helpful in our development

of applications. The Corona simulator allowed for quick

prototyping whenever we made any change, saving us from a

lengthy wait for the loading of Xcode simulator or Android

emulator and encouraging us to test our code often. The

Corona simulator did have limitations including lack of

simulating map-using applications. Titanium did not have

its own simulator so if it were not for the debugging

capabilities of its IDE, testing would not be as

productive. PhoneGap Build and Appery.io’s use of QR

readers to quickly test applications on devices was very

useful for ensuring that the PhoneGap “bridge” would allow

applications access to device features.

97

VI. SUMMARY AND CONCLUSION

Whether using a commercial specialized SDK such as

Corona, getting the most native look-and-feel through

conditional branching with Appcelerator’s Titanium, or

taking the hybrid approach with PhoneGap, each of these

tools give both unique and similar productivity strengths

to developers and businesses. There is no single “best”

way towards cost effectiveness–the approach is different

for everyone. It depends on many factors, including what a

company needs now and wants later, what development

requirements they have, and what the technical background

of their developers are. If a business has web application

developers, the best approach for them may be to use

PhoneGap-related tool, taking advantage of their expertise

and wrapping their product with a native wrapper. If a

developer is game-focused but also wants to make business

and other productivity applications, Corona-type tools may

be the safest of the three approaches. Titanium is the

most “native” as it uses the most native code than either

of the other two, so that is an important trait to

consider. If a business wants to expand their market

beyond iOS and Android, then today a tool that utilizes the

PhoneGap bridge—such as Appery.io—may be their best option.

By dissecting these three tools that make up

significant pieces of the ever-changing mobile cross-

platform development world today, we conclude that there

are cost-effective development techniques that can be found

in each. Thus, although there is no “one-size-fits-all”

approach, a lesson for those who create cross-platform

98

development tools would be that a productive environment

should utilize many already implemented techniques,

including:

 Minimizing the amount of work necessary for

developers outside the realm of the development

environment.

 Limiting the learning curve for those not yet

oriented to the process through extensive

resources, documentation, and adaption of coding

techniques that developers should already be

familiar with, while at the same time, not

slowing them with an avalanche of unnecessary

bloat.

 Ensure that key APIs and functionalities are

available today and plan for the seamless

addition of future APIs and functionalities as

market leaders and technologies change.

 Emphasizing the importance of each stage of the

cross-platform application development lifecycle

when looking at overall productivity and cost-

efficiency.

The DoD should consider many of these techniques while

it still intends to increase the number of people able to

rapidly share information through mobile technologies.

A. CLOSING COMMENTS

Mobile cross-platform application development is quite

new, but already very important, and is growing and

changing rapidly. Mobile cross-platform tools have been

rapidly appearing in the last few years, and so there are

still few books and learning resources available for any of

them. Researching the productivity that developers can

have when using specific tools, like we have done, is one

step towards maturing the growing field. At the same time,

99

this thesis concludes that the field has a lot more

maturing and future work ahead of it.

B. FUTURE WORK

Besides the direct consideration of other smartphones

that are popular in the mobile marketplace (e.g., Windows 8

Phones and Blackberry), the following are areas where in-

depth research could further benefit the evolution of

mobile cross-platform development.

1. Security

Mobile smartphone security and the security of

personal information are important factors in developing

applications whether they are available to any user or are

used solely for defense-related communications and

productivity. Cross-platform development tools (especially

the visual drag-and-drop development environments) tend to

work at high level and that can lead to developer oversight

in the lower-level details that those with malicious intent

could potentially take advantage of.

2. HTML5

As HTML5 specifications continue to evolve and grow,

HTML5 has the potential to change the method in which

developers want to build applications for mobile devices.

While PhoneGap can leverage HTML5 technologies for hybrid-

applications, further research can focus instead on mobile

web applications, the HTML5-compliant web browsers of

smartphone devices, and what smartphone features these web

browsers can access now and in the future. HTML5 is

100

already to some extent supporting mobile offline storage so

that no permanent Internet access is required [28].

3. Other Tools

There are dozens of other mobile cross-platform

development tools that can be analyzed to help determine

which tools provide developers efficient and effective

development techniques. Towards the later part of our

research, we found Appery.io to, despite its use of

PhoneGap, have enough uniqueness in its approach to be

considered a tool in itself worth analyzing further. An

example of another tool with potential is LiveCode, which

allows for the creation of native applications through a

drag-and-drop visual development environment, real-time

“live” testing and a natural program language—English [29].

101

LIST OF REFERENCES

[1] Department of Defense. “Department of Defense

Commercial Mobile Device Implementation Plan,” 15 Feb.

2013. Available:

www.defense.gov/news/DoDCMDImplementationPlan.pdf

[2] K. Whinnery, “Comparing Titanium and PhoneGap,” 12 May

2012. Available:

http://kevinwhinnery.com/post/22764624253/comparing-

titanium-and-phonegap

[3] Appery.io, “Appery.io,” 13 Aug. 2013. Available:

http://www.appery.io

[4] VisionMobile, “Developer Economics 2013” June 2013.

Available: http://www.DeveloperEconomics.com

[5] C. G. Acord, C. C. Murphy, “Cross-platform Mobile

Application Development A Pattern-Based Approach,”

M.S. thesis, Dept. Comp. Sci., Naval Postgraduate

School, Monterey, CA, 2012.

[6] B. Elgin, “Google buys Android for its mobile

arsenal,” Bloomberg Businessweek, 16 Aug. 2005.

Available: http://www.businessweek.com/stories/ 2005-

08-16/google-buys-android-for-its-mobile-arsenal

[7] Google, Inc., “Platform versions,” 13 Aug. 2013.

Available: http://developer.android.com/

resources/dashboard/platform-versions.html

[8] Google, Inc., “Platform versions,” 3 Sep. 2013.

Available: http://developer.android.com/design/

patterns/pure-android.html

[9] VisionMobile “Cross-Platform Developer Tools 2012,”

Feb 2012. Available: http://www.CrossPlatformTools.com

[10] Corona SDK, “Corona Labs,” 13 Aug. 2013. Available:

http://www.coronalabs.com/products/corona-sdk/

[11] W. Luh, “Corona SDK presentation,” 8 Apr. 2012.

Available: https://www.youtube.com/

watch?v=14Uz9RW2_nU

102

[12] Titanium Mobile Development Environment,

“Appcelerator,” 13 Aug. 2013. Available:

http://www.appcelerator.com/platform/titanium-

platform/

[13] PhoneGap, “PhoneGap,” 13 Aug. 2013. Available:

http://www.phonegap.com

[14] R. Ghatol, Y. Patel. Beginning PhoneGap: Mobile web

Framework for JavaScript and HTML5. New York: Apress,

2012.

[15] S. E. Smith, “What is control logic?” WiseGeek, 9 Sep

2013. Available: http://kevinwhinnery

.com/post/22764624253/comparing-titanium-and-phonegap

[16] Corona SDK, “SDK API reference.” 13 Aug. 2013.

Available: http://docs.coronalabs.com/ api/index.html

[17] B. Burton, “Corona app development—reading from SQLite

database,” 16 Feb. 2011. Available:

http://www.youtube.com/watch?v=vN-5m-23zgY

[18] Corona SDK, “Database access using SQLite,” 3 Apr.

2012. Available: http://www.coronalabs.com/blog/

2012/04/03/tutorial-database-access-in-corona/

[19] A. Otaku, “Add/delete items in a list with Titanium

Mobile,” 11 Apr. 2012. Available:

http://blog.hugeaim.com/2012/ 04/11/adddelete-items-

in-the-list-with-titanium-mobile/

[20] M. Falkland, “Corona SDK app creation: part 3,” 3 Aug.

2011. Available: http://www.youtube.com/

watch?v=brSTfZQhLz8

[21] Infinite Skills—Video Training, “Corona SDK tutorial |

creating timers,” 28 Sep. 2012. Available:

http://www.youtube.com/watch?v=olE5bDVRsfE

[22] Lanica. “Lanica for everyone!” 7 Sep. 2013. Available:

http://lanica.co/lanica-for-everyone/

103

[23] M. Apperson, “Gaming comes to Titanium, introducing

the Box2d module,” Appcelerator Developer Blog, 7 Sep.

2011. Available: http://developer.appcelerator

.com/blog/2011/09/gaming-comes-to-titanium-introducing

-the-box2d-module.html

[24] T. Claburn, “Appcelerator funds startup Lanica for

better mobile games,” Information Week, 03 Oct. 2012.

Available: http://www.informationweek.com/development/

mobility/appcelerator-funds-startup-lanica-for-

be/240008418

[25] Lanica. “Lanica documentation,” 7 Sep. 2013.

Available: http://docs.lanica.co/docs/

[26] Titanium Mobile Development Environment, “Resources.”

13 Aug. 2013. Available:

https://my.appcelerator.com/resources

[27] Appery.io, “Docs” [Online] 23 Aug. 2013; Available:

http://docs.appery.io

[28] HTML5 Rocks, “’Offline’: What does it mean and why

should I care?” 23 Aug. 2013. Available:

http://www.html5rocks.com/en/tutorials/offline/whats-

offline/#toc-browser-specific-features

[29] LiveCode, “How LiveCode works.” 23 Aug. 2013.

Available: http://livecode.com/how-it-works/

104

THIS PAGE INTENTIONALLY BLANK

105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

